Purification and characterization of the amiloride-sensitive sodium channel from A6 cultured cells and bovine renal papilla.
نویسندگان
چکیده
The amiloride-binding Na+ channel protein of high electrical resistance epithelia was solubilized and purified from cultured A6 toad kidney cells and bovine renal papilla. Purification was assessed by enrichment in [3H]methylbromoamiloride specific binding. Chromatography of 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS)-solubilized plasma membrane vesicles on agarose-immobilized wheat-germ agglutinin provided a 130-fold enrichment of the amiloride-binding component compared to the cell homogenate. Further purification was achieved by either amiloride-affinity chromatography or size-exclusion HPLC. When the HPLC and amiloride affinity-purified material was injected into a second higher molecular weight exclusion HPLC column, only a single peak with Mr 800,000 was found. Further HPLC separation of the Mr 800,000 material at low ionic strength resolved two peaks with apparent Mrs 800,000 and 700,000. Only the 700-kDa component displayed specific [3H]methylbromoamiloride binding activity. The final binding specific activity achieved was 1300 pmol/mg of protein, corresponding to 91% homogeneity of the protein.
منابع مشابه
Amiloride-sensitive sodium channel is linked to the cytoskeleton in renal epithelial cells.
Amiloride-sensitive sodium channels are localized to the microvillar domain of apical membranes in sodium-transporting renal epithelial cells. To elucidate the elements that maintain sodium channel distribution at the apical membrane, we searched for specific proteins associating with the channel. Triton X-100 extraction of A6 epithelial cells reveals that sodium channels are associated with de...
متن کاملARTICLES Early Effect of Aldosterone on the Rate of Synthesis of the Epithelial Sodium Channel a Subunit in A6 Renal Cells
Transepithelial Na reabsorption across tight epitheha is regulated by aldosterone. The amiloride-sensitive epithehal sodium channel (ENaC) is a major target for the natriferic action of aldosterone. In this study, the effect of aldosterone on ENaC mRNA abundance and the rate of protein synthesis for each of the three ENaC subunits (a, and y) in the A6 kidney cell line were examined. In cells gr...
متن کاملThe cellular pool of Na+ channels in the amphibian cell line A6 is not altered by mineralocorticoids. Analysis using a new photoactive amiloride analog in combination with anti-amiloride antibodies.
An amiloride-sensitive Na+ channel is found in the apical plasma membrane of high resistance, Na+ transporting epithelia. We have developed a method for the identification of this channel based on the use of a new high affinity photoreactive amiloride analog, 2'-methoxy-5'-nitrobenzamil (NMBA), and anti-amiloride antibodies to identify photolabeled polypeptides. NMBA specifically labels the put...
متن کاملAldosterone-stimulated sodium uptake by apical membrane vesicles from A6 cells.
Sodium fluxes in plasma membrane vesicles prepared from the cultured toad kidney epithelial cell line A6 are studied. The vesicles are enriched 7-10 times in apical membrane markers. Sodium uptake is osmotically sensitive and inhibited by low concentrations of amiloride (K0.5 = 7 X 10(-8) M at 1 mM NaCl). Vesicles prepared from aldosterone-treated cells (4.5 h at 10(-7) M aldosterone) show a 2-...
متن کاملPrimary structure of an apical protein from Xenopus laevis that participates in amiloride-sensitive sodium channel activity
High resistance epithelia express on their apical side an amiloride-sensitive sodium channel that controls sodium reabsorption. A cDNA was found to encode a 1,420-amino acid long polypeptide with no signal sequence, a putative transmembrane segment, and three predicted amphipathic alpha helices. A corresponding 5.2-kb mRNA was detected in Xenopus laevis kidney, intestine, and oocytes, with weak...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 83 22 شماره
صفحات -
تاریخ انتشار 1986